Best Practices

for

Database Platform
Engineers

Chelsea Dole
Database Engineer, Citadel

Infra Engineer

¢ Pitch to start leveraging this title on job postings
)¢ “DBAs are dead!”
W Discussion of changes in industry need

W Personal career experience

e Variety of “database-ish” titles

e \Variety of organizations:
o Employee count

o Startup funding round

o Database team size

Chelsea Dole

o Data criticality & volume

1) Efficiently manage many databases as a cohesive fleet via
automation: “cattle’, not pets

2) Leverage specialized database knowledge to build internal
“managed database platforms” for engineers to use

“Building RDS // CloudSQL // Azure SQL DB
for

<CURR_EMPLOYER>"

Database Platform

Engineer
Deep DB & SQL mastery e Deep DB & SQL mastery
SysAdmin mastery e \Weaker SysAdmin
Weaker coding skills e Strong coding skills

Org size: all e Org size: medium — large

Where are Database Platform Engineers?

e Lower ROI on “platform
building” for small

companies 1
®

e Overkill for large
companies without heavy
data challenges

Where are Database Platform Engineers?

“Cattle vs pets”

2.

e Provisioning frequency
® Microservice architecture

Where are Database Platform Engineers?

e Startups: correlation

e Cloud — increased RO 3 o

of automation
o ClLls

o Infra-as-code

e 10,000-person consulting
firm with 5 huge,
high-traffic databases

e Credit union of any size
running on-prem

Database Platform
Engineer

500-person SaaS company
with an 10T product and
many databases

70-person Al startup
running on AWS or Azure

Database Platform Engineer

Best Practices

(in my opinion)

e Control & understand the
“playground” you provide

Consistency:
e Hardware & software > groundwork

for automation

e Establish consistency

Consistency in what?

Naming conventions

Limits on databases, schemas
Standard permissions

Secrets storage
Server/database relationships

.

Consistency:
groundwork
for automation

1. Own the database provisioning process

1) Form submission

2) Worker queue
a) Hardware**
b) Software
c) Secrets
d) Observability

e Frictionless ability to provision hardware: $$%

e Microservice architecture doesn't port well to databases
o 1overburdened main DB, vs
o Too many small overprovisioned DBs

2. Don't make it too easy to provision
databases

1) Form submission
2) Provisioning approval
3) Worker queue

a) Hardware

b) Software

c) Secrets

d) Observability

Archive/delete deprecated tables \

Delete unused indexes

Maintain database metadata
accuracy

Right-sizing servers /

VS

3. Maintain health beyond provisioning

\ -
VS

e Cost visibility dashboards
e Underutilized resources
® FEtc

(or else... what?)

3. Maintain health beyond provisioning

1) Form submission
2) Provisioning approval
3) Worker queue
a) Hardware
b) Software
c) Secrets
d) Observability
4) Maintain long-term health

e Team ownership Harden your

e Service discoverability > systems to

e Contact methods corporate reality &
e Etc y human fallibility

Risk: introduction of new “single point of failure”

Database metadata storage:
e Highly available
e Decoupled from other databases

e Document storage?

4. Manage database metadata dynamically

1) Form submission
2) Provisioning approval
3) Worker queue
a) Hardware
b) Software
c) Secrets
d) Observability
e) Dynamic metadata store
4) Maintain long-term health

e Package basic DBA tasks, but

own the hard problems h

o W Reindex, cancel PIDs, .
password rotation, advanced Allow engineers to
diagnostics.. learn, and leverage

o ¢ Advanced logical replication, your expertise

DR, unlimited config selection...

e Migration safety linter, DB CLI _

5. Build dev-owned tools, not “footguns”

1) Form submission
2) Provisioning approval
3) Worker queue
a) Hardware
b) Software
c) Secrets
d) Observability
e) Dynamic metadata store
4) Maintain long-term health++

OS upgrade
Architecture changes
Standard role/function
SSL cert rotation

Config change

.

e Hardware/OS
e Postgres

10.22.34.01 — mydatabasecluster.company.com

e A Record, CNAME, Proxy N

. Logical
e Infra changes without > replication-based
app-side coordination workflows

e “RDS for..” J

Database Platform Engineer

Best Practices

(still in my opinion)

Pop Quiz:

You ask a software
engineer how much

downtime their database
can take.

What do they respond?

“None”

imgfiip.cofn

taking short,
occasional
downtime during
a convenient
maintenance window

avoiding
maintenance for 5
years until it causes
a huge incident,
resulting in 2h
of critical downtime

Establish maintenance
windows & expectations N

Enable engineers to schedule
tasks

.

Seek leadership buy-in y

CYA:
e Measure server-level
downtime
e Announce publicly

e Default Postgres: latency > observability

e Advanced observability/logging “oft” by default

o More metrics/logs — more CPU/IO

e Modern disks

e Microservices == app-level database sharding

e Choose when to turn off, not turn on

® pg stat statements

e Basic logging
© log connections/log disconnections
o log lock waits (& deadlock timeout)
© log replication commands

e Auto-explain
O auto explain.log min duration = '<>s'
O auto explain.log analyze = on
O auto explain.log buffers = on

9. Prioritize observability > latency

Gotchas:

® log statement (default = none)

® log destination = ‘jsonlog’

and finally...

e Incident management &

debugging challenging)
issues Enable your team to
spend time on
e Breakglass processes in interesting problems
case automation is)

broken

Thank you! §

Chelsea Dole

chelseadole.com

