
Best Practices
for

Database Platform
Engineers

Chelsea Dole
Database Engineer, Citadel

“Database Platform Engineer”

DBA SRE

DevOps Cloud Engineer

Infra Engineer

Database Architect ��

SysAdmin

DBRE

Why bother to talk about this?

● ❌ Pitch to start leveraging this title on job postings

● ❌ “DBAs are dead!”

● ✅ Discussion of changes in industry need

● ✅ Personal career experience

● Variety of “database-ish” titles

● Variety of organizations:

○ Employee count

○ Startup funding round

○ Database team size

○ Data criticality & volume
Chelsea Dole

What do I do in this role?

1) Efficiently manage many databases as a cohesive fleet via
automation: “cattle”, not pets

2) Leverage specialized database knowledge to build internal
“managed database platforms” for engineers to use

What do I do in this role?

“Building RDS // CloudSQL // Azure SQL DB

for

<CURR_EMPLOYER>”

Database Admin
(DBA)

Database Platform
Engineer

● Deep DB & SQL mastery

● SysAdmin mastery

● Weaker coding skills

● Org size: all

● Deep DB & SQL mastery

● Weaker SysAdmin

● Strong coding skills

● Org size: medium → large

Where are Database Platform Engineers?

● Lower ROI on “platform
building” for small
companies

● Overkill for large
companies without heavy
data challenges

Medium to large
SaaS companies

1.

Where are Database Platform Engineers?

Organizations with
many databases

“Cattle vs pets”

● Provisioning frequency
● Microservice architecture

2.

Where are Database Platform Engineers?

● Startups: correlation

● Cloud → increased ROI
of automation
○ CLIs
○ Infra-as-code

Organizations
which heavily

leverage the cloud3.

Database Admin
(DBA)

Database Platform
Engineer

● 10,000-person consulting

firm with 5 huge,
high-traffic databases

● Credit union of any size

running on-prem

● 500-person SaaS company

with an IOT product and
many databases

● 70-person AI startup

running on AWS or Azure

Database Platform Engineer

Best Practices

(in my opinion)

1. Own the database provisioning process

● Control & understand the
“playground” you provide

● Hardware & software

● Establish consistency

Consistency:
groundwork

for automation

1. Own the database provisioning process

Consistency in what?

● Naming conventions
● Limits on databases, schemas
● Standard permissions
● Secrets storage
● Server/database relationships

Consistency:
groundwork

for automation

1. Own the database provisioning process

users

accounts

logins

1) Form submission

2) Worker queue
a) Hardware**
b) Software
c) Secrets
d) Observability

2. Don’t make it too easy to provision
databases

● Frictionless ability to provision hardware: $$$

● Microservice architecture doesn’t port well to databases
○ 1 overburdened main DB, vs
○ Too many small overprovisioned DBs

users

accounts

logins

1) Form submission
2) Provisioning approval
3) Worker queue

a) Hardware
b) Software
c) Secrets
d) Observability

2. Don’t make it too easy to provision
databases

3. Maintain health beyond provisioning

● Archive/delete deprecated tables

● Delete unused indexes

● Maintain database metadata
accuracy

● Right-sizing servers

�� vs

users

accounts

logins

3. Maintain health beyond provisioning

�� vs

● Cost visibility dashboards
● Underutilized resources
● Etc

(or else… what?)

users

accounts

logins

1) Form submission
2) Provisioning approval
3) Worker queue

a) Hardware
b) Software
c) Secrets
d) Observability

4) Maintain long-term health

3. Maintain health beyond provisioning

● Team ownership
● Service discoverability
● Contact methods
● Etc

Risk: introduction of new “single point of failure”

Harden your
systems to
corporate reality &
human fallibility

4. Manage database metadata dynamically

Database metadata storage:

● Highly available

● Decoupled from other databases

● Document storage?

4. Manage database metadata dynamically

users

accounts

logins

4. Manage database metadata dynamically

1) Form submission
2) Provisioning approval
3) Worker queue

a) Hardware
b) Software
c) Secrets
d) Observability
e) Dynamic metadata store

4) Maintain long-term health

5. Build dev-owned tools, not “footguns”

● Package basic DBA tasks, but
own the hard problems

○ ✅ Reindex, cancel PIDs,
password rotation, advanced
diagnostics…

○ ❌ Advanced logical replication,
DR, unlimited config selection…

● Migration safety linter, DB CLI

Allow engineers to
learn, and leverage

your expertise

users

accounts

logins

1) Form submission
2) Provisioning approval
3) Worker queue

a) Hardware
b) Software
c) Secrets
d) Observability
e) Dynamic metadata store

4) Maintain long-term health++

5. Build dev-owned tools, not “footguns”

6. Solve for fleet-wide change rollout

● OS upgrade

● Architecture changes

● Standard role/function

● SSL cert rotation

● Config change

● Hardware/OS
● Postgres

7. Connect via static A Record/CNAME
10.22.34.01 → mydatabasecluster.company.com

● A Record, CNAME, Proxy

● Infra changes without
app-side coordination

● “RDS for…”

Logical
replication-based
workflows

Database Platform Engineer

Best Practices

(still in my opinion)

🌶 slightly spicier 🌶

Pop Quiz:

You ask a software
engineer how much
downtime their database
can take.

What do they respond?

“None”

8. Take planned downtime regularly

● Establish maintenance
windows & expectations

● Enable engineers to schedule
tasks

● Seek leadership buy-in

CYA:
● Measure server-level

downtime
● Announce publicly

9. Prioritize observability > latency

● Default Postgres: latency > observability

● Advanced observability/logging “off” by default
○ More metrics/logs → more CPU/IO

● Modern disks

● Microservices == app-level database sharding

● Choose when to turn off, not turn on

9. Prioritize observability > latency

● pg_stat_statements

● Basic logging
○ log_connections / log_disconnections
○ log_lock_waits (& deadlock_timeout)
○ log_replication_commands

● Auto-explain
○ auto_explain.log_min_duration = '<>s'
○ auto_explain.log_analyze = on
○ auto_explain.log_buffers = on

9. Prioritize observability > latency

Gotchas:

● log_statement (default = none)

● log_destination = ‘jsonlog’

9. Prioritize observability > latency

and finally…

10. psql is still a “first class citizen”

● Incident management &
debugging challenging
issues

● Breakglass processes in
case automation is
broken

Enable your team to
spend time on

interesting problems

Thank you! 👋

Chelsea Dole

chelseadole.com

